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A set of localized basis orbitals are presented to locally represent electromagnetic field in photonic crystals.
These orbitals are different from the optical Wannier functions. They are the optical parallelism of quasiatomic
orbitals in the context of electronic problems. We demonstrate the utility of these localized optical orbitals by
recapturing eigenmodes in defected structures. Calculations for cavity modes and dispersion relations of
waveguides agree well with the results from plane-wave expansion calculations. This approach also offers
interesting physical insight to understand the state of light in ideal photonic crystals as well as defected
structures.
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I. INTRODUCTION

Photonic crystals �PCs�, a novel class of optical materials
with a periodic dielectric distribution, have attracted much
attention in areas of optics and optoelectronics. Due to pho-
tonic band-gap effect, light can be localized and manipu-
lated, which facilitates the realization of ultrasmall optical
integrated circuits.1–3 Numerical methods using localized
functions such as optical Wannier functions �WFs� �Refs.
4–8� and tight-binding approaches9–11 have proven to be
powerful tools to study the localized states in PCs. Optical
Wannier functions, adopted from the electronic theory of
solids,12–15 provide an alternative basis to plane waves to
study the localized state of light in PCs. Much interest has
been focused on WFs for its highly localized characteristic
and usefulness for studying the defected systems. However,
considerable steps of iteration are needed to get the maxi-
mally localized WFs.5 In addition, a suitable set of trial func-
tions to start the iteration is essential in this approach. To get
these trial WFs, one has to guess the shapes and locations of
them. Even with suitable trial WFs, one does not know what
the final WFs will look like after iteration, since the iteration
process is like a black box and the output WFs may be very
different from the input trial functions. As a consequence,
these uncertainties make the construction of WFs complex
and not so direct.

In this paper we suggest a different basis of highly local-
ized functions as an alternative to WFs. The idea comes from
the quasiatomic minimal basis orbitals �QUAMBOs� in the
context of electronic theory of solids.16–18 Like WFs, QUA-
MBOs are the linear combinations of Bloch orbitals. How-
ever, WFs are constructed through minimizing the transverse
spread functional,4,5 yet QUAMBOs are obtained to let
themselves be mostly like the free atomic orbitals. The
QUAMBOs attained from this scheme contain the adaptation
of the basis to the environments such as molecules or crys-
tals, while keeping the essentially quasiatomic character in
these environments.16 The purpose of this paper is to adapt
the concept of QUAMBOs to optical systems. Ideal PCs or
periodic alternate dielectric materials are like molecules
while individual dielectric layers/columns/spheres that build

up PCs are like atoms. The optical QUAMBOs should con-
tain information of both “atoms” �individual dielectric
blocks� and “molecules” �lattice of these blocks�. To con-
struct these QUAMBO-like localized optical orbitals
�LOOs�, we project Bloch wave solutions to optical states,
which are analogous to free atomic orbitals, and orthogonize
these projections to make them satisfy the general orthogo-
nalization relation of WFs. Since LOOs and WFs share the
same characteristic of localization and orthogonality, theo-
retically any WF-based scheme can be adapted to LOO
method to study defected structures. By comparison between
the construction processes of these two bases, we see that
LOOs are constructed through direct projection and orthogo-
nalization, while WFs are constructed through iteration. The
advantage of projection and orthogonalization lies in that
they require much less computer time than iteration. Mean-
while, LOOs and the atomlike orbitals to be projected are
very alike, and we can anticipate roughly what the LOOs
will look like before they are constructed. But WFs and the
trial functions to start iteration may be very different. We do
not know what comes out when we put in trial functions.
Another superiority of LOOs is its straightforward construc-
tion. We do not need to guess anything such as the shape of
trial functions.

To illustrate our idea, LOOs are constructed to quantita-
tively describe the electromagnetic wave localization and
propagation in one-dimensional �1D� systems. We chose a
1D system as our first example because this simplest struc-
ture offers a most straightforward description of LOO con-
cept. Then this approach is extended to two-dimensional
�2D� case, where cavities and straight waveguides are stud-
ied. Numerical calculations by other methods19–22 are also
given as a comparison to testify our method. This work also
suggests a possibility of using these optical QUAMBOs to
study three-dimensional �3D� PCs.

II. CONSTRUCTION OF LOCALIZED OPTICAL
ORBITALS IN 1D SYSTEMS

Consider a 1D PC shown in Fig. 1�a�. It is a 1D lattice of
dielectric layers in air with dielectric constant �=13. The
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thickness of the dielectric layers is one half of the lattice
constant a. The light that propagates in the z direction can be
expressed by the electric field E�z��, which obeys the wave
equation

� �2

�z2 + ��

c
�2

�p�z���E�z�� = 0, �1�

where we have assumed a time harmonic dependence,
E�z� , t�=E�z��exp�−i�t�, of the electric field with the fre-
quency �. �p�z�� is the dielectric index of the periodic struc-
ture �p�z�+R� �=�p�z�� and R� is the lattice vector. Equation �1�
has solutions referred to as the Bloch functions, which satis-
fies the Bloch-Floquet theorem23

En,k��z� + R� � = eik�·R�En,k��z�� , �2�

where n and k� indicate the photonic band index and the wave
vector.

To adapt the concept of QUAMBOs to this system, we
first need to find solutions which are analogous to free
atomic orbitals. However, the scattering nature of light does
not allow such localized solutions unless a boundary is en-
forced to restrain photons from escaping. As Fig. 1�b� shows,
we apply a perfect conducting boundary at both sides of a
dielectric layer, which is like an “atom.” We set the distance
L between two ends to be 1.4a. Note that the value of L
cannot be too large compared to a, otherwise the atomlike
optical orbitals are not well localized. Neither can L be
smaller than a, to allow interaction between “atoms” �dielec-
tric layers� to give a modulation of light. From our calcula-
tion, we find that the optimal value of L ranges from 1.2 to
1.5a. In this range, the results are not sensitive to this bound-
ary. There are four solutions Em

�0��z�� �m=1,2 , . . . ,N, N=4� in
the normalized frequency range �a / �2�c�=0.0�0.9, as
shown in Fig. 2�a�. By projecting Em

�0� to En,k�, we get the
projections24,25

Ẽm�z�� = �
n,k�

cm,n,k�En,k��z�� , �3�

where coefficients cm,n,k� are defined as follows:

cm,n,k� = 	En,k�
�p
Em
�0�� =� dz�En,k�

� �z���p�z��Em
�0��z�� . �4�

The integration runs over the entire space. Here we use
Bloch waves Enk� in the first four bands �n=1,2 , . . . ,N, N
=4�. We take 11 k� points in the first Brillouin zone �BZ�.
Then we orthonormalize Ẽm to get a basis Ẽm� ,26,27 which

satisfy the relation 	Ẽm� 
�p
Ẽm�
� �=�mm�, and where Ẽm� �z��

=�n,k�cm,n,k�
� En,k��z��. We pick up the k� component of Ẽm� after

the above orthogonalization

Ẽm,k�
� �z�� = �

n

cm,n,k�
� En,k��z�� , �5�

and orthonormalize Ẽm,k�
� for each k� to get a basis Ẽm,k�

� , which

satisfies 	Ẽm,k�
� 
�p
Ẽm�,k�

� �=�mm�, and where Ẽm,k�
� �z��

=�ncm,n,k�
� En,k��z��. Summing up Ẽm,k�

� over k� we can finally get

a set of localized functions Ẽm� �z��=�k�Ẽm,k�
� �z��, which can be

proven to satisfy the following orthogonality relation

	Ẽm� �z� − R� �
�p�z��
Ẽm�
� �z� − R� ��� = �mm��R� ,R��. �6�

Following the above steps we construct an orthonormal

basis Ẽm� �z��, i.e., LOOs. Note that here we follow the projec-
tion process in the works by Lu et al.16,17 But QUAMBOs in
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FIG. 1. Structure of �a� a 1D PC of dielectric layers in air and
�b� one dielectric layer with a perfect conducting boundary.
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FIG. 2. �a� The first four modes for one dielectric layer with
boundary as shown in Fig. 1�b�; �b� LOOs constructed from the four
modes in �a� and Bloch wave solutions in the first four bands. The
horizontal axis is the scale in the unit of lattice constant a.
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these works are not an orthogonal set. Beyond projection, we
also need an orthogonalization process to make LOOs be an
orthonormal basis like WFs. One can easily see that LOOs
shares two major characteristics with WFs: the well-
localized property and the orthogonality, which is inherited
from Bloch functions. Equation �6� has exactly the same
form with the orthogonality equation in Refs. 4 and 5. In Fig.

2�b� we plot Ẽm� �z�� �m=1,2 , . . . ,N, N=4�, which are ob-
tained from the “free atom orbitals” shown in Fig. 2�a�. We

see that wiggling tails appear in Ẽm� �z�� as a result of projec-
tion and orthogonalization. Instead of jumping to zero from
finity at the boundary in original orbitals see Fig. 2�a��, the
magnetic field H� �

�zE naturally undulates steadily to zero in
Fig. 2�b�. In some cases the wiggling tails extend to long
distances and thus break the well-localized property of
LOOs. Then we need to introduce virtual orbitals to reduce
or get rid of these undesirable wiggling tails.28

Since Ẽm� �z�� owes the orthogonality relation to Eq. �6� just
as WFs, we can directly transplant the method, which uses
the same orthogonality relation of WFs to calculate the pho-
tonic band structure.4,5 The electric field in Eq. �1� can be

expanded in the basis of Ẽm� �z��

Ek��z�� = �
m,R�

Cmeik�·R� Ẽm� �z� − R� � , �7�

where Cm are undetermined coefficients. By substituting Eq.

�7� into Eq. �1� and applying the orthogonality of Ẽm� �z�� Eq.
�6��, we obtain the following eigenvalue equation:

�
m�

��
R��

eik�·R��A0�R��
mm��Cm� = ��

c
�2

Cm, �8�

where

AR� R��
mm� = 	Ẽm� �z� − R� �
 −

�2

�z2 
Ẽm��z� − R� ���

=
a

2�
�

BZ

dk�eik�·�R� −R����
n=1

N

cm,n,k�
�� ��n,k�

c
�2

cm�,n,k�
� . �9�

By solving the eigenvalue matrix in Eq. �8�, we reproduce
the photonic band structure in the LOO basis. The result is
shown in Fig. 3. As Eq. �9� indicates, there are two ways to

calculate the matrix AR� R��
mm�. One is to integrate over z� in real

space, the other is to integrate over k�. They both can yield
exact reproduction of the photonic band structure. The band
structure shown in Fig. 3 is computed from the integral in k
space. Solid lines indicate the band structure calculated by
plane-wave expansion �PWE� method, and dots by using
LOO basis. It can be seen that our method agrees quite well
with PWE in the first four bands.

III. DEFECT STRUCTURES IN 1D PHOTONIC CRYSTALS

In the presence of a defect ���z�� over the periodic permit-
tivity function �p�z��, the electric field Maxwell wave equa-
tion Eq. �1� should be rewritten as

−
�2

�z2E�z�� = ��

c
�2

��z��E�z�� , �10�

where ��z��=�p�z��+���z��. We expand the electric field in Eq.
�10� as follows:

E�z�� = �
m,R�

Cm,R� Ẽm� �z� − R� � , �11�

where Cm,R� are coefficients to be determined. By substituting
Eq. �11� into Eq. �10� and applying the orthogonality of
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FIG. 3. Band structure of 1D PC in Fig. 1�a� calculated by PWE
�solid line� method and reproduced by LOO �dots� method.
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FIG. 4. �Color online� The first three cavity modes from PWE
�solid/black� and LOO �dashed/red� calculations. The horizontal
axis is the scale in the unit of a.
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Ẽm� �z��, we obtain the following tight-binding matrix equation:

�
m�,R��

AR� R��
mm�Cm�,R�� = ��

c
�2

�
m�,R��

��mm��R� R�� + DR� R��
mm��Cm�,R��,

�12�

where

DR� R��
mm� = 	Ẽm� �z� − R� �
��
Ẽm�

� �z� − R� ���

=� dz�Ẽm�
��z� − R� ����z��Ẽm�

� �z� − R� �� , �13�

and AR� R��
mm� is defined as before in Eq. �9�. The above is the

scheme in Refs. 4 and 5 except that LOOs are used as basis
instead of WFs. As a numerical example, we study a struc-
ture with one dielectric layer missing. Figure 4 shows the
first three eigenmode profiles computed from plane-wave ex-
pansion method19 and our method. In this calculation, we use
six LOOs that are constructed from 66 Bloch wave solutions
in the first six bands. Exact agreement is achieved in the
mode shape and we can hardly see any error. Normalized
frequencies for these three cavity modes are 0.24056,
0.37649, 0.67364/0.23991, 0.37615, and 0.67186 given by
LOO/PWE calculations, respectively. The maximum relative
difference is 0.27%.

IV. LOCALIZED OPTICAL ORBITALS IN 2D PHOTONIC
CRYSTALS AND DEFECTED STRUCTURES

In parts II and III, we illustrate the concept of LOOs by a
1D example. In this example, each dielectric layer in air can
be compared to an isolated atom. These atomlike layers are
connected to form a crystal. The state of light that propagates
in the crystal can be expanded in the quasiatomlike basis.
The basis constructed in this way contains information of
both the isolated atoms and lattice made of the atoms. After
this 1D example, it is expected to extend our LOO method to
2D cases, where each dielectric pole can be regarded as an
atom. In this paper, we restrict ourselves to the case of trans-
verse magnetic �TM�-polarized radiation propagating. How-
ever, we would like to point out that this approach can be
extended to transverse electric �TE�-polarized radiation as
well as light propagation in 3D structures. Consider a square
lattice of dielectric columns in air as shown in Fig. 5�a�. The
cylinder has a dielectric constant 9.0 and a radius r=0.35a,
where a is the lattice constant. This structure has a 2D pho-
tonic band gap from 0.251 to 0.29 and another gap from
0.425 to 0.493 in the normalized frequency �a /2�c.

To find solutions corresponding to free atomic orbitals,
again a boundary is needed to restrain light from escaping.
We apply a cylindrical perfect conducting boundary to the
dielectric cylinder as shown in Fig. 5�b�. The radius of the
boundary R is set to be 0.7a. This value is chosen for the
same reason as in 1D case. For the structure in Fig. 5�b�,
there are six TM-polarized solutions Ez �z� is along the direc-
tion of dielectric columns� in the normalized frequency range
�a / �2�c�=0.0�1.0, as shown in Fig. 6�a�. All of these so-
lutions are products of Bessel functions of first/second kind,

a

r

R

(a)

(b)

E=0

y

x
z

FIG. 5. Structure for �a� a 2D PC with a square lattice of dielec-
tric rods in air, and �b� one dielectric column with a cylindrical
perfect conducting boundary.
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FIG. 6. �Color online� �a� The first six modes for one dielectric
column with a cylindrical boundary as shown in Fig. 5�b�; �b�
LOOs constructed from the six modes in �a� and Bloch wave solu-
tions in the first six bands.
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and an angular function eim�, where m is an integer. In find-
ing these solutions, we need to consider the symmetry. The
second and third solutions are twofolded, while the fourth
and fifth fourfolded, and they all appear in pairs. From these
six solutions and Bloch eigenstates of PC in the first six
bands, we construct six Ez LOOs using the same technique
developed in 1D case. We take 7�7 k� points in the whole
first BZ, when constructing the LOOs. As indicated in Fig.
6�b�, their localization properties as well as the symmetries
of the underlying PC structure are clearly visible. We note
that through this way of construction, all the LOOs are lo-
calized at dielectric rods. This property is different from that
of optical WFs, where some of the WFs are localized at air
regions.4,5

In Fig. 7, we show the photonic band structure in black
points reproduced by the E-field LOOs. Solid lines indicate
the photonic band structure calculated with 441 plane waves
by the PWE method. The solid lines �PWE� and the dots
�LOO method� coincide. We use the same method in Refs. 4
and 5 in reproducing the band structure by LOOs.

We consider a cavity with one dielectric cylinder removed
from the ideal PC. We apply the E-field LOO method to the
calculation of the cavity mode. We take six LOOs in the
calculation. As before, the scheme is the same as in Refs. 4
and 5, except that we use LOOs instead of optical WFs. The
resonant frequency of the cavity mode in the second band
gap is 0.48303 by LOO method versus 0.48017 in normal-
ized frequency �a /2�c by transfer matrix method �TMM�
�see Refs. 21 and 22�. The relative difference is 0.60%. In
Fig. 8�a�, we plot the cavity mode profile computed by LOO
method. Mode shape computed by TMM is also plotted as a
comparison in Fig. 8�b�. A 7�7 supercell and 105 plane
waves are taken to do the TMM calculation. As we can see in
Fig. 8, the mode shapes calculated by the two methods look
alike but there is still visible difference. The difference
around the edges of supercell can be explained by the inter-
action between supercells in TMM calculation and thus can
be neglected. However, there is noticeable difference in the
central and the third peaks that can only be explained by the
inaccuracy of LOO method. After testing, we ascribe this
error to the inadequate LOOs. If we increase the number of
LOOs, the difference is reduced and the whole mode shape is
more like what is obtained by TMM.

As our last example, we consider a waveguide consisting
of one removed line of dielectric rods. We use the method in
Refs. 4 and 5 to calculate the guided mode. Figure 9 shows
the dispersion relation of the guided mode in the first gap in
the LOO method �dots� and in PWE �solid lines�. As indi-
cated in the figure, the solid lines and the dots coincide very
well. We take six LOOs in LOO calculation, and a 7�1
supercell and 105 plane waves in PWE calculation.
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FIG. 7. Band structure �TM polarized� of the 2D PC in Fig. 5�a�,
calculated by PWE �solid line� method and reproduced by LOO
�dots� method.
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FIG. 8. �Color online� Cavity mode profile. �a� Electric field
distribution �magnitude� calculated by LOO method; �b� magnitude
of electric field at y=0 calculated by TMM �solid/black� and
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0.0 0.1 0.2 0.3 0.4 0.5
0.0

0.1

0.2

0.3

PWE
LOO

ka/2π

ω
a/

2π
c

FIG. 9. Dispersion relation of guided mode calculated by PWE
�solid line� and LOO �dots� methods.

LOCALIZED OPTICAL ORBITAL APPROACH TO STUDY… PHYSICAL REVIEW B 80, 035111 �2009�

035111-5



V. CONCLUSIONS

In conclusion, we develop a QUAMBO-like, E-field LOO
method to study localized states of defected PCs. We have
demonstrated the applicability, precision, and efficiency of
LOO method to 1D and 2D �TM polarization� PCs with pla-
nar, point, and line defects. The structures that we took as
examples both have analytical solutions corresponding to
free atomic orbitals. However, for those structures that do not
have analytical free-atomlike solutions such as lattice of ar-
bitrary shaped poles, we need to use numerical methods such
as finite difference time domain29 to find these solutions.
This will add little to calculation burden, since it is over a
region that is comparable to one unit cell. Our method can be
extended to the description of TE-polarized radiation in 2D
PCs as well as to the propagation of optical waves in 3D
PCs, by applying the same scheme of optical WFs in Ref. 5.
The reason which allows us to do so is that the only differ-

ence between LOO and optical WF method lies in the way of
construction of LOOs/WFs. Since the two bases share the
same characteristic of localization and orthogonality, theo-
retically any WF-based scheme �e.g., see Refs. 4, 5, and 7�
can be adapted to LOO method. Our future work includes
study of TE-polarized propagation in 2D PCs and propaga-
tion of electromagnetic waves in 3D PCs by applying LOO
method.
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